# Difference between revisions of "Suggested Pipelines"

Line 35: | Line 35: | ||

== Basic Resting State MEG processing == |
== Basic Resting State MEG processing == |
||

− | When examining resting state data, the end goals is usually to examine either static measures of power, or connectivity. For connectivity, the output of SAM is a continuous time series, usually the Hilbert envelope of a band limited signal. Following calculation of this time series, other routines (such as ICA, seed based correlation, etc.) can be used to derive connectivity between regions. |
+ | Basic preprocessing of resting state MEG data includes filtering, and possibly artifact removal. Removing artifacts could consist of eliminating bad segments, or a more comprehensive process like ICA. When examining resting state data, the end goals is usually to examine either static measures of power, or connectivity. For connectivity, the output of SAM is a continuous time series, usually the Hilbert envelope of a band limited signal. Following calculation of this time series, other routines (such as ICA, seed based correlation, etc.) can be used to derive connectivity between regions. |

{{#mermaid:graph LR |
{{#mermaid:graph LR |

## Revision as of 13:33, 20 March 2019

## Master Pipeline

## Basic MRI Pre-Processing Workflow

For any experiment where you wish to localize data to the brain, the first step is MRI pre-processing. First, MEG data must be co-registered to the space of the MRI, either by manually placing fiducial points on the MRI, or through a semi-automated method where a digital head shape is aligned with a head surface. (Other algorithmic techniques are possible, these will be discussed later). For the purpose of source space reconstruction, the head can be modeled either as a collection of spheres, one per channel, (MultiSphere) or in a realistic fashion using the Nolte model.

## Basic Resting State MEG processing

Basic preprocessing of resting state MEG data includes filtering, and possibly artifact removal. Removing artifacts could consist of eliminating bad segments, or a more comprehensive process like ICA. When examining resting state data, the end goals is usually to examine either static measures of power, or connectivity. For connectivity, the output of SAM is a continuous time series, usually the Hilbert envelope of a band limited signal. Following calculation of this time series, other routines (such as ICA, seed based correlation, etc.) can be used to derive connectivity between regions.

- Create covariance matrices using sam_cov.
- Compute beamformer weights with sam_wts.
- sam_3d uses the weights to compute volumetric images of activity estimates.
- View them with AFNI.
- It didn't work, go back and try again.
- Nope, still didn't work, try this instead.