AnalysisGuidelines
UNDER CONSTRUCTION
Analysis Introduction
1) Anatomical Processing
2) MEG Trigger Configuration
3) MEG Inverse Solution (SAM software)
4) Statistical Analysis
Data collection:
Exact timing of the experiment can be provided in the data acquisition or a set of smaller trials can be provided
CTF Software: DataEditor -data $DATA
thresholdDetect - Detect changes in the analog inputs to determine onset of stimulus addmarkers - necessary to embed the stimulus timing into the CTF dataset
parsemarks - Combines markers (i.e optical and parallel port)
newDs -f -filter processing.cfg
Anatomy Processing:
The MRI processing starts with anat+orig.BRIK and anat+orig.HEAD format. The datasets are opened using AFNI
fiddist.py fiddist2.py - wrapper that accepts two inputs and provides the difference in distance (e.g. MRI and dataset)
Jupyter Notebook Over a Remote Connection
1) Run one terminal to start the notebook:
ssh -Y $USER@$REMOTE_HOST cd $FOLDER_WITH_CODE #If necessary: conda activate $CONDA_ENV jupyter notebook --no-browser --port=8887
2) Run another terminal to forward the port to your local machine
(Replace User and Remote_Host with the appropriate username and ip-address)
ssh -N -L localhost:8888:localhost:8887 $USER@$REMOTE_HOST
3) In Firefox/Chrome/Etc - Log into localhost:8888
This will prompt you for a token
4) In the password/token column, copy the token created in the first terminal
(It should look like the below - only copy the portion after the token= )
http://localhost:8887/?token=####HERE_IS_THE_TOKEN_CODE---COPY_THIS_AND_PASTE_INTO_BROWSER
Version Control for Jupyter Notebook Nbdime for notebook version control (a jupyter interface for git)