Machine Learning SIG: Difference between revisions
Jump to navigation
Jump to search
Content added Content deleted
(→MEG) |
(→MEG) |
||
Line 64: | Line 64: | ||
[https://robintibor.github.io/braindecode/ Deep Learning Decoding]<br> |
[https://robintibor.github.io/braindecode/ Deep Learning Decoding]<br> |
||
[https://mne.tools/stable/auto_examples/decoding/decoding_rsa_sgskip.html MNE Representational Similarity Analysis]<br> |
[https://mne.tools/stable/auto_examples/decoding/decoding_rsa_sgskip.html MNE Representational Similarity Analysis]<br> |
||
[https://github.com/nbara/python-meegkit Toolbox for Trial-Masked Robust Detrending]<br> |
[https://github.com/nbara/python-meegkit Toolbox for Trial-Masked Robust Detrending] to overcome decoding issues from filtering<br> |
||
===NIH=== |
===NIH=== |
Revision as of 15:26, 9 November 2021
Objectives
Advance general knowledge of machine learning techniques within the MEG community. Discuss journal articles, replicate techniques on NIH data, develop new ML techniques at NIH.
Format
- Specific Projects (Weekly)
- Code Review
- Project updates
- Question and Answer Clinic for users
- General (Monthly)
- Journal Club
- Hackathons – implement novel technique from JC with provided data
- Tutorial Workshops - instruct worked out examples with provided code/data
- General ML training
- Parameter tuning
- Model optimization
- Techniques
- Toolbox tutorials (Scikit-learn / keras)
Analysis Types
- Decoding[1][2]
- Subject classification
- eg. Healthy Control vs Major Depressive Disorder
- What are the significant features (brain regions, Hz)
- Automated diagnosis of TBI from MEG low frequency signals [14]
- Prediction of future condition / Biomarkers
- Multimodal Integration [18]
- Signal classification
- Temporal learning models - Sequence learning
- Recurrent Neural Networks
- Markov Models[27]
- Inferences from deep learning models
Resources
General
MEG
MNE Python Decoding
MNE Python Decoding at Source
RealTime MEG
Deep Learning Decoding
MNE Representational Similarity Analysis
Toolbox for Trial-Masked Robust Detrending to overcome decoding issues from filtering
NIH
Biowulf Deep Learning Course
Biowulf DeepLearning Tools
NIMH Machine Learning in Neuroimaging
Center for Multimodal Neuroimaging
NIH-AI
Relevant Papers
- ↑ [1] Deconstructing multivariate decoding for the study of brain function: Martin N.Hebart, Chris I.Baker
- ↑ [2] An introduction to time-resolved decoding analysis for M/EEG:Thomas A. Carlson, Tijl Grootswagers, Amanda K. Robinson
- ↑ [3] Encoding and Decoding Neuronal Dynamics: Methodological Framework to Uncover the Algorithms of Cognition
- ↑ [4] Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data
- ↑ [5] Multivariate pattern analysis for MEG: A comparison of dissimilarity measures - Matthias Guggenmos, Philipp Sterzer, Radoslaw Martin Cichy
- ↑ [6] High-pass filtering artifacts in multivariate classification of neural time series data
- ↑ [7] Characterizing the dynamics of mental representations: the temporal generalization method - J-R.King, S.Dehaene
- ↑ [8] Targeted Reinforcement of Neural Oscillatory Activity with Real-time Neuroimaging Feedback : Esther Florin, Elizabeth Bock, Sylvain Baillet
- ↑ [9] Real-time MEG neurofeedback training of posterior alpha activity modulates subsequent visual detection performance: Yuka O.Okazaki, Jörn M.Horschig, Lisa Luther, Robert Oostenveld, Ikuya Murakami, OleJensen
- ↑ [10] Alpha Synchrony and the Neurofeedback Control of Spatial Attention: Yasaman Bagherzadeh, Daniel Baldauf, Dimitrios Pantazis, Robert Desimone
- ↑ [11] Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance Benedikt Zoefel, René J.Huster, Christoph S.Herrmann
- ↑ [12] Implementation of a beam forming technique in real-time magnetoencephalography: Hiroki Ora, Kouji Takano, Toshihiro Kawase, Sunao Iwaki,Lauri Parkkonen Kenji Kansaku
- ↑ [13] Laura Gwilliams, Jean-Remi King,Alec Marantz & David Poeppel
- ↑ [14] An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes
- ↑ [15] Aberrant MEG multi-frequency phase temporal synchronization predictsconversion from mild cognitive impairment-to-Alzheimer's disease: Sandra Pusil, Stavros I. Dimitriadis, María Eugenia López, Ernesto Pereda, Fernando Maestú
- ↑ [16] Deep-MEG: spatiotemporal CNN features and multiband ensemble classification for predicting the early signs of Alzheimer’s disease with magnetoencephalography: Antonio Giovannetti, Gianluca Susi, Paola Casti, Arianna Mencattini, Sandra Pusil, María Eugenia López, Corrado Di Natale & Eugenio Martinelli
- ↑ [17] Assessing Recovery from Mild Traumatic Brain Injury (Mtbi) using Magnetoencephalography (MEG): An Application of the Synchronous Neural Interactions (SNI) Test : Don R. Thorpe, Brian E. Engdahl, Arthur Leuthold, Apostolos P. Georgopoulos
- ↑ [18] A M/EEG-fMRI Fusion Primer: Resolving Human Brain Responses in Space and Time: Radoslaw M.Cichy Aude Oliva
- ↑ [19] Resolving human object recognition in space and time: Radoslaw Martin Cichy, Dimitrios Pantazis & Aude Oliva Nature Neuroscience volume 17, pages455–462 (2014)
- ↑ [20] Using joint ICA to link function and structure using MEG and DTI in schizophrenia J.M.Stephen, B.A.Coffman, R.E.Jung, J.R.Bustillo, C.J.Aine, V.D.Calhoun
- ↑ [21] Multimodal Classification of Schizophrenia Patients with MEG and fMRI Data Using Static and Dynamic Connectivity Measures: Mustafa S. Cetin, Jon M. Houck, Barnaly Rashid, Oktay Agacoglu, Julia M. Stephen, Jing Sui, Jose Canive, Andy Mayer, Cheryl Aine, Juan R. Bustillo and Vince D. Calhoun
- ↑ [22] MEGnet: Automatic ICA-based artifact removal for MEG using spatiotemporal convolutional neural networks Alex H.Treacher et al.
- ↑ [23] ICLabel: An automated electroencephalographic independent component classifier, dataset, and website: Luca Pion-Tonachini, Ken Kreutz-Delgado, Scott Makeig
- ↑ [24] EMS-Net: A Deep Learning Method for Autodetecting Epileptic Magnetoencephalography Spikes: Li Zheng, Pan Liao, Shen Luo, Jingwei Sheng, Pengfei Teng, Guoming Luan, Jia-Hong Gao
- ↑ [25] Automated Detection of Epileptic Biomarkers in Resting-State Interictal MEG Data: Miguel C. Soriano, Guiomar Niso, Jillian Clements, Silvia Ortín, Sira Carrasco, María Gudín, Claudio R. Mirasso and Ernesto Pereda
- ↑ [26] A Long Short-Term Memory neural network for the detection of epileptiform spikes and high frequency oscillations: A. V. Medvedev, G. I. Agoureeva & A. M. Murro
- ↑ [27] Task-Evoked Dynamic Network Analysis Through Hidden Markov Modeling: Andrew J. Quinn, Diego Vidaurre, Romesh Abeysuriya, Robert Becker,Anna C. Nobre1, and Mark W. Woolrich
- ↑ [28] Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence: Radoslaw Martin Cichy 1,2 , Aditya Khosla 1 , Dimitrios Pantazis 3 , Antonio Torralba 1 & Aude Oliva 1
- ↑ [29] Performance-optimized hierarchical models only partially predict neural responses during perceptual decision making: Laura Gwilliams, Jean-Rémi King