Machine Learning SIG: Difference between revisions
Jump to navigation
Jump to search
Content added Content deleted
Line 25: | Line 25: | ||
##Temporal Generalization <ref> [https://www.sciencedirect.com/science/article/pii/S1364661314000199] Characterizing the dynamics of mental representations: the temporal generalization method - J-R.King, S.Dehaene </ref> |
##Temporal Generalization <ref> [https://www.sciencedirect.com/science/article/pii/S1364661314000199] Characterizing the dynamics of mental representations: the temporal generalization method - J-R.King, S.Dehaene </ref> |
||
##Realtime - Brain computer interface / neurofeedback <ref>[https://pubmed.ncbi.nlm.nih.gov/24211817/] Targeted Reinforcement of Neural Oscillatory Activity with Real-time Neuroimaging Feedback : Esther Florin, Elizabeth Bock, Sylvain Baillet </ref><ref>[https://www.sciencedirect.com/science/article/pii/S1053811914010064?via%3Dihub] Real-time MEG neurofeedback training of posterior alpha activity modulates subsequent visual detection performance: Yuka O.Okazaki, Jörn M.Horschig, Lisa Luther, Robert Oostenveld, Ikuya Murakami, OleJensen </ref><ref>[https://www.cell.com/neuron/pdfExtended/S0896-6273(19)30964-X] Alpha Synchrony and the Neurofeedback Control of Spatial Attention: Yasaman Bagherzadeh, Daniel Baldauf, Dimitrios Pantazis, Robert Desimone </ref> <ref>[https://www.sciencedirect.com/science/article/pii/S105381191001181X?via%3Dihub] Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance |
##Realtime - Brain computer interface / neurofeedback <ref>[https://pubmed.ncbi.nlm.nih.gov/24211817/] Targeted Reinforcement of Neural Oscillatory Activity with Real-time Neuroimaging Feedback : Esther Florin, Elizabeth Bock, Sylvain Baillet </ref><ref>[https://www.sciencedirect.com/science/article/pii/S1053811914010064?via%3Dihub] Real-time MEG neurofeedback training of posterior alpha activity modulates subsequent visual detection performance: Yuka O.Okazaki, Jörn M.Horschig, Lisa Luther, Robert Oostenveld, Ikuya Murakami, OleJensen </ref><ref>[https://www.cell.com/neuron/pdfExtended/S0896-6273(19)30964-X] Alpha Synchrony and the Neurofeedback Control of Spatial Attention: Yasaman Bagherzadeh, Daniel Baldauf, Dimitrios Pantazis, Robert Desimone </ref> <ref>[https://www.sciencedirect.com/science/article/pii/S105381191001181X?via%3Dihub] Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance |
||
Benedikt Zoefel, René J.Huster, Christoph S.Herrmann </ref><ref> [https://www.researchgate.net/publication/257133883_Implementation_of_a_beam_forming_technique_in_real-time_magnetoencephalography] Implementation of a beam forming technique in real-time magnetoencephalography: Hiroki Ora, Kouji Takano, Toshihiro Kawase, Sunao Iwaki,Lauri Parkkonen Kenji Kansaku </ref> |
|||
Benedikt Zoefel, René J.Huster, Christoph S.Herrmann </ref> |
|||
##Language Phoneme Decoding <ref>[https://www.biorxiv.org/content/10.1101/2020.04.04.025684v2] Laura Gwilliams, Jean-Remi King,Alec Marantz & David Poeppel </ref> |
##Language Phoneme Decoding <ref>[https://www.biorxiv.org/content/10.1101/2020.04.04.025684v2] Laura Gwilliams, Jean-Remi King,Alec Marantz & David Poeppel </ref> |
||
#Subject classification |
#Subject classification |
Revision as of 15:19, 9 November 2021
Objectives
Advance general knowledge of machine learning techniques within the MEG community. Discuss journal articles, replicate techniques on NIH data, develop new ML techniques at NIH.
Format
- Specific Projects (Weekly)
- Code Review
- Project updates
- Question and Answer Clinic for users
- General (Monthly)
- Journal Club
- Hackathons – implement novel technique from JC with provided data
- Tutorial Workshops - instruct worked out examples with provided code/data
- General ML training
- Parameter tuning
- Model optimization
- Techniques
- Toolbox tutorials (Scikit-learn / keras)
Analysis Types
- Decoding[1][2]
- Subject classification
- eg. Healthy Control vs Major Depressive Disorder
- What are the significant features (brain regions, Hz)
- Automated diagnosis of TBI from MEG low frequency signals [14]
- Prediction of future condition / Biomarkers
- Multimodal Integration [18]
- Signal classification
- Temporal learning models - Sequence learning
- Recurrent Neural Networks
- Markov Models[27]
- Inferences from deep learning models
Resources
General
MEG
MNE Python Decoding
MNE Python Decoding at Source
RealTime MEG
Deep Learning Decoding
MNE Representational Similarity Analysis
NIH
Biowulf Deep Learning Course
Biowulf DeepLearning Tools
NIMH Machine Learning in Neuroimaging
Center for Multimodal Neuroimaging
NIH-AI
Relevant Papers
- ↑ [1] Deconstructing multivariate decoding for the study of brain function: Martin N.Hebart, Chris I.Baker
- ↑ [2] An introduction to time-resolved decoding analysis for M/EEG:Thomas A. Carlson, Tijl Grootswagers, Amanda K. Robinson
- ↑ [3] Encoding and Decoding Neuronal Dynamics: Methodological Framework to Uncover the Algorithms of Cognition
- ↑ [4] Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data
- ↑ [5] Multivariate pattern analysis for MEG: A comparison of dissimilarity measures - Matthias Guggenmos, Philipp Sterzer, Radoslaw Martin Cichy
- ↑ [6] High-pass filtering artifacts in multivariate classification of neural time series data
- ↑ [7] Characterizing the dynamics of mental representations: the temporal generalization method - J-R.King, S.Dehaene
- ↑ [8] Targeted Reinforcement of Neural Oscillatory Activity with Real-time Neuroimaging Feedback : Esther Florin, Elizabeth Bock, Sylvain Baillet
- ↑ [9] Real-time MEG neurofeedback training of posterior alpha activity modulates subsequent visual detection performance: Yuka O.Okazaki, Jörn M.Horschig, Lisa Luther, Robert Oostenveld, Ikuya Murakami, OleJensen
- ↑ [10] Alpha Synchrony and the Neurofeedback Control of Spatial Attention: Yasaman Bagherzadeh, Daniel Baldauf, Dimitrios Pantazis, Robert Desimone
- ↑ [11] Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance Benedikt Zoefel, René J.Huster, Christoph S.Herrmann
- ↑ [12] Implementation of a beam forming technique in real-time magnetoencephalography: Hiroki Ora, Kouji Takano, Toshihiro Kawase, Sunao Iwaki,Lauri Parkkonen Kenji Kansaku
- ↑ [13] Laura Gwilliams, Jean-Remi King,Alec Marantz & David Poeppel
- ↑ [14] An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes
- ↑ [15] Aberrant MEG multi-frequency phase temporal synchronization predictsconversion from mild cognitive impairment-to-Alzheimer's disease: Sandra Pusil, Stavros I. Dimitriadis, María Eugenia López, Ernesto Pereda, Fernando Maestú
- ↑ [16] Deep-MEG: spatiotemporal CNN features and multiband ensemble classification for predicting the early signs of Alzheimer’s disease with magnetoencephalography: Antonio Giovannetti, Gianluca Susi, Paola Casti, Arianna Mencattini, Sandra Pusil, María Eugenia López, Corrado Di Natale & Eugenio Martinelli
- ↑ [17] Assessing Recovery from Mild Traumatic Brain Injury (Mtbi) using Magnetoencephalography (MEG): An Application of the Synchronous Neural Interactions (SNI) Test : Don R. Thorpe, Brian E. Engdahl, Arthur Leuthold, Apostolos P. Georgopoulos
- ↑ [18] A M/EEG-fMRI Fusion Primer: Resolving Human Brain Responses in Space and Time: Radoslaw M.Cichy Aude Oliva
- ↑ [19] Resolving human object recognition in space and time: Radoslaw Martin Cichy, Dimitrios Pantazis & Aude Oliva Nature Neuroscience volume 17, pages455–462 (2014)
- ↑ [20] Using joint ICA to link function and structure using MEG and DTI in schizophrenia J.M.Stephen, B.A.Coffman, R.E.Jung, J.R.Bustillo, C.J.Aine, V.D.Calhoun
- ↑ [21] Multimodal Classification of Schizophrenia Patients with MEG and fMRI Data Using Static and Dynamic Connectivity Measures: Mustafa S. Cetin, Jon M. Houck, Barnaly Rashid, Oktay Agacoglu, Julia M. Stephen, Jing Sui, Jose Canive, Andy Mayer, Cheryl Aine, Juan R. Bustillo and Vince D. Calhoun
- ↑ [22] MEGnet: Automatic ICA-based artifact removal for MEG using spatiotemporal convolutional neural networks Alex H.Treacher et al.
- ↑ [23] ICLabel: An automated electroencephalographic independent component classifier, dataset, and website: Luca Pion-Tonachini, Ken Kreutz-Delgado, Scott Makeig
- ↑ [24] EMS-Net: A Deep Learning Method for Autodetecting Epileptic Magnetoencephalography Spikes: Li Zheng, Pan Liao, Shen Luo, Jingwei Sheng, Pengfei Teng, Guoming Luan, Jia-Hong Gao
- ↑ [25] Automated Detection of Epileptic Biomarkers in Resting-State Interictal MEG Data: Miguel C. Soriano, Guiomar Niso, Jillian Clements, Silvia Ortín, Sira Carrasco, María Gudín, Claudio R. Mirasso and Ernesto Pereda
- ↑ [26] A Long Short-Term Memory neural network for the detection of epileptiform spikes and high frequency oscillations: A. V. Medvedev, G. I. Agoureeva & A. M. Murro
- ↑ [27] Task-Evoked Dynamic Network Analysis Through Hidden Markov Modeling: Andrew J. Quinn, Diego Vidaurre, Romesh Abeysuriya, Robert Becker,Anna C. Nobre1, and Mark W. Woolrich
- ↑ [28] Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence: Radoslaw Martin Cichy 1,2 , Aditya Khosla 1 , Dimitrios Pantazis 3 , Antonio Torralba 1 & Aude Oliva 1
- ↑ [29] Performance-optimized hierarchical models only partially predict neural responses during perceptual decision making: Laura Gwilliams, Jean-Rémi King