Machine Learning SIG: Difference between revisions
Jump to navigation
Jump to search
Content added Content deleted
Line 19: | Line 19: | ||
==Analysis Types== |
==Analysis Types== |
||
#Decoding |
#Decoding |
||
##Multivariate time series classification between conditions <ref>[https://hal.archives-ouvertes.fr/hal-01848442/document |
##Multivariate time series classification between conditions <ref>[https://hal.archives-ouvertes.fr/hal-01848442/document ] Encoding and Decoding Neuronal Dynamics: |
||
Methodological Framework to Uncover the Algorithms of Cognition </ref><ref>[https://direct.mit.edu/jocn/article-abstract/29/4/677/28605/Decoding-Dynamic-Brain-Patterns-from-Evoked?redirectedFrom=fulltext ] Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data </ref> |
|||
###Filtering Issues<ref>[https://www.sciencedirect.com/science/article/pii/S0165027021000157] High-pass filtering artifacts in multivariate classification of neural time |
###Filtering Issues<ref>[https://www.sciencedirect.com/science/article/pii/S0165027021000157] High-pass filtering artifacts in multivariate classification of neural time |
||
series data</ref> |
series data</ref> |
||
Line 26: | Line 27: | ||
##eg. Healthy Control vs Major Depressive Disorder |
##eg. Healthy Control vs Major Depressive Disorder |
||
##What are the significant features (brain regions, Hz) |
##What are the significant features (brain regions, Hz) |
||
##Automated diagnosis of TBI from MEG low frequency signals <ref>[https://www.sciencedirect.com/science/article/pii/S1053811912004259]</ref> |
##Automated diagnosis of TBI from MEG low frequency signals <ref>[https://www.sciencedirect.com/science/article/pii/S1053811912004259] An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes</ref> |
||
#Prediction of future condition / Biomarkers |
#Prediction of future condition / Biomarkers |
||
##What signals predict conversion from mild cognitive impairment to Alzheimer |
##What signals predict conversion from mild cognitive impairment to Alzheimer |
Revision as of 16:44, 8 November 2021
Objectives
Advance general knowledge of machine learning techniques within the MEG community. Discuss journal articles, replicate techniques on NIH data, develop new ML techniques at NIH.
Format
- Specific Projects (Weekly)
- Code Review
- Project updates
- Questions and Answers Clinic for users
- General (Monthly)
- Journal Club
- Hackathons – implement novel technique from JC with provided data
- Tutorial Workshops - instruct worked out examples with provided code/data
- General ML training
- Parameter tuning
- Model optimization
- Techniques
- Toolbox tutorials (Scikit-learn / keras)
Analysis Types
- Decoding
- Subject classification –
- eg. Healthy Control vs Major Depressive Disorder
- What are the significant features (brain regions, Hz)
- Automated diagnosis of TBI from MEG low frequency signals [4]
- Prediction of future condition / Biomarkers
- What signals predict conversion from mild cognitive impairment to Alzheimer
- What signals predict recovery from traumatic brain injury
- What signals predict poor outcome for epilepsy surgery
- Multimodal Integration
- Timing derived from MEG / localization from fMRI – joint ICA (??)
- Signal comparison between naturalistic viewing data MEG/fMRI
- Signal classification
- Artifact
- Signal of interest – Spike detection for epilepsy
- Signal/sequence predicts correct response
- Temporal learning models – RNN DL / markov model
- Inferences from deep learning models
- CNN on images vs. CNN of brain responses to same images
Preliminary Resources
MNE Python Decoding MNE Python Decoding at Source
SciKit Learn
Keras
Relevant Papers
- ↑ [1] Encoding and Decoding Neuronal Dynamics: Methodological Framework to Uncover the Algorithms of Cognition
- ↑ [2] Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data
- ↑ [3] High-pass filtering artifacts in multivariate classification of neural time series data
- ↑ [4] An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes