MEG analysis on Biowulf: Difference between revisions

From MEG Core
Jump to navigation Jump to search
Content added Content deleted
No edit summary
Line 22: Line 22:


===Load MNE modules===
===Load MNE modules===
sinteractive --mem=6G --cpus-per-task=4 #OR spersist.... - Adjust the memory and cpus accordingly
module load MNE/0.24.1
module load mne/0.24.1 # OR module load mne <<-- defaults to most current version
ipython
ipython
import mne
import mne

==Best Practices for Group Data Preprocessing==
==Best Practices for Group Data Preprocessing==
===Build a swarm file===
===Build a swarm file===

Revision as of 08:37, 18 March 2022

!!Under Construction!!

Biowulf brief intro

Biowulf (biowulf.nih.gov) is the head node of the Biowulf cluster at NIH - https://hpc.nih.gov/docs/userguide.html
Helix - is the storage server attached to the biowulf cluster

Analysis of data should not be performed on the biowulf head node, but run through an sinteractive node or swarm process.
To start with, there are a limited number of commands loaded on the system. To access more programs use module load. To search, use module spider.

 e.g. module load afni


SAM MEG Data Analysis

 module load afni 
 module load ctf
 module load samsrcv3/20180713-c5e1042

MNE python data analysis

To Access Additional MEG modules

 #Add the following line to your ${HOME}/.bashrc
 module use --append /data/MEGmodules/modulefiles

Load MNE modules

 sinteractive --mem=6G --cpus-per-task=4  #OR spersist....  - Adjust the memory and cpus accordingly
 module load mne/0.24.1   # OR module load mne  <<-- defaults to most current version
 
 ipython
 import mne

Best Practices for Group Data Preprocessing

Build a swarm file

 for i in ${GROUP_FOLDER}/*.ds; do echo my_process.py -in1 input1 -in2 -input2 -dataset $i >> swarm_file_preprocess.sh ; done
 
 #Make sure the process runs on at least one subject/dataset
 tail -1 swarm_file_preprocess.sh | bash 
 
 #Verify the results on the single subject / possibly look at how much RAM / CPU was used before submitting the full batch to swarm
 swarm -f ./swarm_file_preprocess.sh -g ${GigsOfRAM} -t ${CPUcores}  # -b ${How many subjects to run in row on 1 computer} - can be useful if you have a fast process 


Making your own python module

Build the python conda environment

It is recommended to create an install script so that this can be sent to a slurm job

 # Load conda - if set up according to the HPC page, this should work
 source /data/${USER}/conda/etc/profile.d/conda.sh; conda activate base
 
 # echo mamba create -p ${PATH_TO_OUTPUT} condaPackage1 condaPackage2 conda-forge::condaForgePackage1  -y  > installFile.sh
 # Make sure to include the -y or the job will hang waiting for user response
 # Also make sure you have an active conda prompt when submitting the swarm, or else it will fail
 echo mamba create -p /data/ML_MEG/python_modules/mne0.24.1 jupyter ipython conda-forge::mne -y  > python_install.sh
 swarm -f ./python_install.sh -g 4 -t 4

Make a module file

To display most of the contents of a module file run

 module display python  #For the python module

Output:

 ----------------------------------------------------------------------------------
  /usr/local/lmod/modulefiles/python/3.8.lua:
 ----------------------------------------------------------------------------------
 family("python")
 prepend_path("PATH","/usr/local/Anaconda/envs/py3.8/bin")
 pushenv("OMP_NUM_THREADS","1")

Copy Template to your module folder

 #MyModule is the family name of the code / ${Version}.lua
 cp /usr/local/lmod/modulefiles/python/3.8.lua  ${myModuleFilesDir}/${MyModule}/0.1.lua

Add module files to the search path

 module use --append ${PathToUserModuleFiles}

Final Step Load Your Module

 module load ${MyModuleName}
 #Example
 [$USERd@$NODE python_modules]$ module load mne
 
 [$USERd@$NODE python_modules]$ ipython
 Python 3.9.10 | packaged by conda-forge | (main, Feb  1 2022, 21:24:11) 
 Type 'copyright', 'credits' or 'license' for more information
 IPython 8.1.1 -- An enhanced Interactive Python. Type '?' for help.
 
 In [1]: import mne
 
 In [2]: mne.__path__
 Out[2]: ['/data/ML_MEG/python_modules/mne0.24.1/lib/python3.9/site-packages/mne']