Machine Learning SIG: Difference between revisions
Jump to navigation
Jump to search
Content added Content deleted
(→NIH) |
|||
Line 23: | Line 23: | ||
###Filtering Issues<ref>[https://www.sciencedirect.com/science/article/pii/S0165027021000157] High-pass filtering artifacts in multivariate classification of neural time |
###Filtering Issues<ref>[https://www.sciencedirect.com/science/article/pii/S0165027021000157] High-pass filtering artifacts in multivariate classification of neural time |
||
series data</ref> |
series data</ref> |
||
##Temporal Generalization <ref> Characterizing the dynamics of mental representations: the temporal generalization method - J-R.King, S.Dehaene </ref> |
|||
##Realtime - Brain computer interface / neurofeedback |
##Realtime - Brain computer interface / neurofeedback |
||
#Subject classification |
#Subject classification |
||
Line 32: | Line 33: | ||
##What signals predict recovery from traumatic brain injury |
##What signals predict recovery from traumatic brain injury |
||
##What signals predict poor outcome for epilepsy surgery |
##What signals predict poor outcome for epilepsy surgery |
||
#Multimodal Integration <ref>[https://www.sciencedirect.com/science/article/pii/S0896627320305183] A M/EEG-fMRI Fusion Primer: Resolving Human Brain Responses in Space and Time: Radoslaw M.Cichy Aude Oliva </ref> |
|||
#Multimodal Integration |
|||
##Timing derived from MEG / localization from fMRI <ref>[https://www.nature.com/articles/nn.3635] Resolving human object recognition in space and time: Radoslaw Martin Cichy, Dimitrios Pantazis & Aude Oliva Nature Neuroscience volume 17, pages455–462 (2014)</ref> |
##Timing derived from MEG / localization from fMRI <ref>[https://www.nature.com/articles/nn.3635] Resolving human object recognition in space and time: Radoslaw Martin Cichy, Dimitrios Pantazis & Aude Oliva Nature Neuroscience volume 17, pages455–462 (2014)</ref> |
||
##Signal comparison between naturalistic viewing data MEG/fMRI |
##Signal comparison between naturalistic viewing data MEG/fMRI |
||
## |
##Combining DTI and MEG <ref> [https://www.sciencedirect.com/science/article/abs/pii/S1053811913006757] Using joint ICA to link function and structure using MEG and DTI in schizophrenia |
||
J.M.Stephen, B.A.Coffman, R.E.Jung, J.R.Bustillo, C.J.Aine, V.D.Calhoun </ref> |
J.M.Stephen, B.A.Coffman, R.E.Jung, J.R.Bustillo, C.J.Aine, V.D.Calhoun </ref> |
||
##Multimodal imaging classification <ref> [https://internal-journal.frontiersin.org/articles/10.3389/fnins.2016.00466/full] Multimodal Classification of Schizophrenia Patients with MEG and fMRI Data Using Static and Dynamic Connectivity Measures: Mustafa S. Cetin, Jon M. Houck, Barnaly Rashid, Oktay Agacoglu, Julia M. Stephen, Jing Sui, Jose Canive, Andy Mayer, Cheryl Aine, Juan R. Bustillo and Vince D. Calhoun </ref> |
|||
#Signal classification |
#Signal classification |
||
##Artifact <ref>[https://www.sciencedirect.com/science/article/pii/S1053811921006777] MEGnet: Automatic ICA-based artifact removal for MEG using spatiotemporal convolutional neural networks |
##Artifact <ref>[https://www.sciencedirect.com/science/article/pii/S1053811921006777] MEGnet: Automatic ICA-based artifact removal for MEG using spatiotemporal convolutional neural networks |
Revision as of 10:37, 9 November 2021
Objectives
Advance general knowledge of machine learning techniques within the MEG community. Discuss journal articles, replicate techniques on NIH data, develop new ML techniques at NIH.
Format
- Specific Projects (Weekly)
- Code Review
- Project updates
- Question and Answer Clinic for users
- General (Monthly)
- Journal Club
- Hackathons – implement novel technique from JC with provided data
- Tutorial Workshops - instruct worked out examples with provided code/data
- General ML training
- Parameter tuning
- Model optimization
- Techniques
- Toolbox tutorials (Scikit-learn / keras)
Analysis Types
- Decoding
- Subject classification
- eg. Healthy Control vs Major Depressive Disorder
- What are the significant features (brain regions, Hz)
- Automated diagnosis of TBI from MEG low frequency signals [5]
- Prediction of future condition / Biomarkers
- Multimodal Integration [8]
- Signal classification
- Temporal learning models – RNN DL / markov model [17]
- Inferences from deep learning models
Preliminary Resources
General
MEG
MNE Python Decoding MNE Python Decoding at Source
RealTime MEG
Deep Learning Decoding
NIH
NIMH Machine Learning in Neuroimaging
NIH-AI
Biowulf Deep Learning Course
Biowulf DeepLearning Tools
Relevant Papers
- ↑ [1] Encoding and Decoding Neuronal Dynamics: Methodological Framework to Uncover the Algorithms of Cognition
- ↑ [2] Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data
- ↑ [3] High-pass filtering artifacts in multivariate classification of neural time series data
- ↑ Characterizing the dynamics of mental representations: the temporal generalization method - J-R.King, S.Dehaene
- ↑ [4] An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes
- ↑ [5] Aberrant MEG multi-frequency phase temporal synchronization predictsconversion from mild cognitive impairment-to-Alzheimer's disease: Sandra Pusil, Stavros I. Dimitriadis, María Eugenia López, Ernesto Pereda, Fernando Maestú
- ↑ [6] Deep-MEG: spatiotemporal CNN features and multiband ensemble classification for predicting the early signs of Alzheimer’s disease with magnetoencephalography: Antonio Giovannetti, Gianluca Susi, Paola Casti, Arianna Mencattini, Sandra Pusil, María Eugenia López, Corrado Di Natale & Eugenio Martinelli
- ↑ [7] A M/EEG-fMRI Fusion Primer: Resolving Human Brain Responses in Space and Time: Radoslaw M.Cichy Aude Oliva
- ↑ [8] Resolving human object recognition in space and time: Radoslaw Martin Cichy, Dimitrios Pantazis & Aude Oliva Nature Neuroscience volume 17, pages455–462 (2014)
- ↑ [9] Using joint ICA to link function and structure using MEG and DTI in schizophrenia J.M.Stephen, B.A.Coffman, R.E.Jung, J.R.Bustillo, C.J.Aine, V.D.Calhoun
- ↑ [10] Multimodal Classification of Schizophrenia Patients with MEG and fMRI Data Using Static and Dynamic Connectivity Measures: Mustafa S. Cetin, Jon M. Houck, Barnaly Rashid, Oktay Agacoglu, Julia M. Stephen, Jing Sui, Jose Canive, Andy Mayer, Cheryl Aine, Juan R. Bustillo and Vince D. Calhoun
- ↑ [11] MEGnet: Automatic ICA-based artifact removal for MEG using spatiotemporal convolutional neural networks Alex H.Treacher et al.
- ↑ [12] ICLabel: An automated electroencephalographic independent component classifier, dataset, and website: Luca Pion-Tonachini, Ken Kreutz-Delgado, Scott Makeig
- ↑ [13] EMS-Net: A Deep Learning Method for Autodetecting Epileptic Magnetoencephalography Spikes: Li Zheng, Pan Liao, Shen Luo, Jingwei Sheng, Pengfei Teng, Guoming Luan, Jia-Hong Gao
- ↑ [14] Automated Detection of Epileptic Biomarkers in Resting-State Interictal MEG Data: Miguel C. Soriano, Guiomar Niso, Jillian Clements, Silvia Ortín, Sira Carrasco, María Gudín, Claudio R. Mirasso and Ernesto Pereda
- ↑ [15] A Long Short-Term Memory neural network for the detection of epileptiform spikes and high frequency oscillations: A. V. Medvedev, G. I. Agoureeva & A. M. Murro
- ↑ [16] Task-Evoked Dynamic Network Analysis Through Hidden Markov Modeling: Andrew J. Quinn, Diego Vidaurre, Romesh Abeysuriya, Robert Becker,Anna C. Nobre1, and Mark W. Woolrich
- ↑ [17] Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence: Radoslaw Martin Cichy 1,2 , Aditya Khosla 1 , Dimitrios Pantazis 3 , Antonio Torralba 1 & Aude Oliva 1
- ↑ [18] Performance-optimized hierarchical models only partially predict neural responses during perceptual decision making: Laura Gwilliams, Jean-Rémi King