Machine Learning SIG: Difference between revisions
Jump to navigation
Jump to search
Content added Content deleted
Line 37: | Line 37: | ||
#Signal classification |
#Signal classification |
||
##Artifact <ref>[https://www.sciencedirect.com/science/article/pii/S1053811921006777] MEGnet: Automatic ICA-based artifact removal for MEG using spatiotemporal convolutional neural networks |
##Artifact <ref>[https://www.sciencedirect.com/science/article/pii/S1053811921006777] MEGnet: Automatic ICA-based artifact removal for MEG using spatiotemporal convolutional neural networks |
||
Alex H.Treacher et al.</ref> <ref> [https://sccn.ucsd.edu/~scott/pdf/ICLabel19.pdf] ICLabel: An automated electroencephalographic independent component classifier, dataset, and website: Luca Pion-Tonachini, Ken Kreutz-Delgado, Scott Makeig </ref> |
|||
Alex H.Treacher et al.</ref> |
|||
##Signal of interest – Spike detection for epilepsy <ref>[https://pubmed.ncbi.nlm.nih.gov/31831410/] EMS-Net: A Deep Learning Method for Autodetecting Epileptic Magnetoencephalography Spikes: |
##Signal of interest – Spike detection for epilepsy <ref>[https://pubmed.ncbi.nlm.nih.gov/31831410/] EMS-Net: A Deep Learning Method for Autodetecting Epileptic Magnetoencephalography Spikes: |
||
Li Zheng, Pan Liao, Shen Luo, Jingwei Sheng, Pengfei Teng, Guoming Luan, Jia-Hong Gao </ref> <ref> [https://www.frontiersin.org/articles/10.3389/fninf.2017.00043/full] Automated Detection of Epileptic Biomarkers in Resting-State Interictal MEG Data: Miguel C. Soriano, Guiomar Niso, Jillian Clements, Silvia Ortín, Sira Carrasco, María Gudín, Claudio R. Mirasso and Ernesto Pereda </ref> <ref> [https://www.nature.com/articles/s41598-019-55861-w] A Long Short-Term Memory neural network for the detection of epileptiform spikes and high frequency oscillations: |
Li Zheng, Pan Liao, Shen Luo, Jingwei Sheng, Pengfei Teng, Guoming Luan, Jia-Hong Gao </ref> <ref> [https://www.frontiersin.org/articles/10.3389/fninf.2017.00043/full] Automated Detection of Epileptic Biomarkers in Resting-State Interictal MEG Data: Miguel C. Soriano, Guiomar Niso, Jillian Clements, Silvia Ortín, Sira Carrasco, María Gudín, Claudio R. Mirasso and Ernesto Pereda </ref> <ref> [https://www.nature.com/articles/s41598-019-55861-w] A Long Short-Term Memory neural network for the detection of epileptiform spikes and high frequency oscillations: |
Revision as of 20:39, 8 November 2021
Objectives
Advance general knowledge of machine learning techniques within the MEG community. Discuss journal articles, replicate techniques on NIH data, develop new ML techniques at NIH.
Format
- Specific Projects (Weekly)
- Code Review
- Project updates
- Question and Answer Clinic for users
- General (Monthly)
- Journal Club
- Hackathons – implement novel technique from JC with provided data
- Tutorial Workshops - instruct worked out examples with provided code/data
- General ML training
- Parameter tuning
- Model optimization
- Techniques
- Toolbox tutorials (Scikit-learn / keras)
Analysis Types
- Decoding
- Subject classification –
- eg. Healthy Control vs Major Depressive Disorder
- What are the significant features (brain regions, Hz)
- Automated diagnosis of TBI from MEG low frequency signals [4]
- Prediction of future condition / Biomarkers
- Multimodal Integration
- Timing derived from MEG / localization from fMRI [7]
- Signal comparison between naturalistic viewing data MEG/fMRI
- Signal classification
- Temporal learning models – RNN DL / markov model [13]
- Inferences from deep learning models
Preliminary Resources
MNE Python Decoding MNE Python Decoding at Source
SciKit Learn
Keras
Relevant Papers
- ↑ [1] Encoding and Decoding Neuronal Dynamics: Methodological Framework to Uncover the Algorithms of Cognition
- ↑ [2] Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data
- ↑ [3] High-pass filtering artifacts in multivariate classification of neural time series data
- ↑ [4] An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes
- ↑ [5] Aberrant MEG multi-frequency phase temporal synchronization predictsconversion from mild cognitive impairment-to-Alzheimer's disease: Sandra Pusil, Stavros I. Dimitriadis, María Eugenia López, Ernesto Pereda, Fernando Maestú
- ↑ [6] Deep-MEG: spatiotemporal CNN features and multiband ensemble classification for predicting the early signs of Alzheimer’s disease with magnetoencephalography: Antonio Giovannetti, Gianluca Susi, Paola Casti, Arianna Mencattini, Sandra Pusil, María Eugenia López, Corrado Di Natale & Eugenio Martinelli
- ↑ [7] Resolving human object recognition in space and time: Radoslaw Martin Cichy, Dimitrios Pantazis & Aude Oliva Nature Neuroscience volume 17, pages455–462 (2014)
- ↑ [8] MEGnet: Automatic ICA-based artifact removal for MEG using spatiotemporal convolutional neural networks Alex H.Treacher et al.
- ↑ [9] ICLabel: An automated electroencephalographic independent component classifier, dataset, and website: Luca Pion-Tonachini, Ken Kreutz-Delgado, Scott Makeig
- ↑ [10] EMS-Net: A Deep Learning Method for Autodetecting Epileptic Magnetoencephalography Spikes: Li Zheng, Pan Liao, Shen Luo, Jingwei Sheng, Pengfei Teng, Guoming Luan, Jia-Hong Gao
- ↑ [11] Automated Detection of Epileptic Biomarkers in Resting-State Interictal MEG Data: Miguel C. Soriano, Guiomar Niso, Jillian Clements, Silvia Ortín, Sira Carrasco, María Gudín, Claudio R. Mirasso and Ernesto Pereda
- ↑ [12] A Long Short-Term Memory neural network for the detection of epileptiform spikes and high frequency oscillations: A. V. Medvedev, G. I. Agoureeva & A. M. Murro
- ↑ [13] Task-Evoked Dynamic Network Analysis Through Hidden Markov Modeling: Andrew J. Quinn, Diego Vidaurre, Romesh Abeysuriya, Robert Becker,Anna C. Nobre1, and Mark W. Woolrich
- ↑ [14] Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence: Radoslaw Martin Cichy 1,2 , Aditya Khosla 1 , Dimitrios Pantazis 3 , Antonio Torralba 1 & Aude Oliva 1
- ↑ [15] Performance-optimized hierarchical models only partially predict neural responses during perceptual decision making: Laura Gwilliams, Jean-Rémi King