
  

Real-Time MEG Analysis

Dr. Tom Holroyd
NIMH MEG Core Facility

Club Meg

20201023



  

Topics

● Hardware

● Examples

– Subject Re-positioning
– Neurofeedback
– RT Beamforming

● Machine learning

– Using beamformers and forward solutions
– BCI



  

Hardware

● CTF 275-channel MEG

● Data from the SQuID electronics are sent in packets of about 90 samples
(~75 ms at 1.2 kHz) to the Acquisition computer (called Squid)

● A Python script (acq_reader) gets copies:
● Packets are converted to Python Numpy arrays and processed
● Results can be sent over network connections to other computers

● Both serial and network connections are available for the stimulus computer (called Ika)
● A high-performance GPU-enabled workstation (called Kani) is available over the network 

(NFS / direct packets)



  

Hardware

● Squid (aka the Acquisition computer)

– 8 core Intel Xeon CPU X5647 @ 2.93GHz
– 12 GB RAM
– Receives MEG data from CTF electronics
– Process and save/send to other computers



  

Hardware

● Ika (Stimulus computer)

● Ika can talk to the Acq computer (Squid) by serial or TCP

● NVIDIA GTX 1060 GPU (6 GB)

● Example: The Head Repositioning System



  

Hardware

● Kani

● 20 core Intel Xeon W-2255 CPU @ 3.70GHz

● NVIDIA Quadro RTX 8000 GPU, 48 GB RAM

● 1 TB SSD & 4 TB HD storage

● Singularity container with Keras/Tensorflow 2.0



  

Subject Re-positioning

Continuous Head Localization Example

The CTF system can be configured to provide 
continuous output of head position information.

The acq_reader script extracts the head position 
information from the real-time data stream and 
outputs it to the stimulus computer over a serial link.

The stimulus computer displays a model of the 
subject‘s head position inside the MEG sensor.

Target locations for the fiducial coils, read from a 
previously recorded dataset, are displayed as boxes.

The subjects can use this to position themselves into 
a similar position to the one they were in for the 
previous recording.

This is what the subject sees



  

RT Neurofeedback (simple version)

We have an example script that does the following:

RT channel data are filtered into a narrow band 
(alpha) and an instantaneous power estimate is sent 
to the stimulus computer.

The stimulus computer displays this power level 
(which can in fact be a ratio of two different 
frequency band powers, or indeed anything) as the 
height of a ball over a stand.

The Acq computer is powerful enough to calculate a 
number of metrics to send to the stimulus computer 
for biofeedback purposes.

Virtual beamformer channels are also possible.

This is what the subject sees



  

RT Beamforming

Step one in creating a beamformer is 
calculating a head model, which 
requires an MRI.

The subject‘s MRI must be labeled 
with fidicual marks before the scan, 
and rotated into the correct coordinate 
system. Target coordinates can be 
selected beforehand.

Next, a baseline collection is required before RT operations, to establish the head 
position and covariance statistics. That dataset can then be used to establish a 
head model.

Beamformers are calculated on the Acq computer using the usual sam_cov and 
sam_wts programs. Beamformers are vectors, one per target source. Multiple 
beamformers can be used to calculate virtual timeseries in real time.

It‘s best to use very recent covariance data.



  

RT Beamforming

A beamformer is calculated from data, as well as a magnetic field 
calculation that depends on the head model.

Because the brain‘s statistics are non-stationary, the covariance 
matrix used to create the beamformer may change during a long 
recording.

To deal with this, we have an algorithm called SER (Widrow & 
Stearns) which calculates the covariance matrix on the fly. Data 
samples can be sent to a separate process on the Acq computer 
which continuously updates a covariance matrix.

This RT covariance can be used to update the beamformer, which 
improves S/N.



  

Machine Learning

● RT MEG data are sent over the network to the 
compute engine Kani, either via direct socket or NFS 
filesystem.

● Pre-computed beamformers can be loaded into a 
Deep Neural Network (DNN) model.

– This allows the GPU to calculate virtual channels.
● Forward solutions can be computed (sam_wts -B) 

and used by the network to reconstruct the input.



  

Machine Learning

● A beamformer is just a vector of 275 numbers, one per 
channel. A virtual channel is just the inner product of the 
filtered data with a beamformer. This is what a neural 
network does (linear combination).

● N beamformers can be loaded into a DNN tensor layer. 
Then the input 275-channel MEG data is automatically 
turned into N virtual channels inside the DNN.

● Forward solutions (sam_wts -B), the computed magnetic 
fields from the head model, can be loaded into DNN 
layers too. Then the network can, using deeper, trained 
layers, compute what the magetic field would look like.



  

Autoencoder

An autoencoder learns to reproduce its input.

That is, the output is trained on the input (self-
supervised learning). The middle layer “code“ is a 
lower dimensional representation of the input.



  

Autoencoder Input & Output

Raw MEG Data Reconstruction

This network had 50 weights in the middle layer. Contrast has 
been enhanced due to elimination of unmodeled noise.



  

Classifier with Frozen Beamformers

input_tensor = Input(shape = (seglen, M))

l = Dense(Nbeam, activation = 'linear', bias = False)

x = l(input_tensor)

l.set_weights([Beam])

l.trainable = False

l1 = x = Lambda(lambda x: x * x)(x)

x = BatchNormalization()(x)

x = Dropout(.5)(x)

x = Convolution1D(30, 15, activation = 'softplus')(x)

x = Convolution1D(30, 15, activation = 'softplus')(x)

x = MaxPooling1D(2)(x)

x = BatchNormalization()(x)

x = Dropout(.5)(x)

x = Convolution1D(30, 10, activation = 'softplus')(x)

x = Convolution1D(30, 10, activation = 'softplus')(x)

x = MaxPooling1D(2)(x)

x = BatchNormalization()(x)

x = Dropout(.5)(x)

x = Flatten()(x)

x = Dense(50, activation = 'softplus', bias = True)(x)

x = Dense(50, activation = 'softplus', bias = True)(x)

x = Dense(50, activation = 'softplus', bias = True)(x)

x = Dense(len(mlist), activation = 'softmax', bias = True)(x)

classifier = x

Keras/Tensorflow code that loads beamformers
into a frozen input layer.



  

Predictive Ability

Each voxel‘s ability to classify the data alone (% over trials)

Beta band (15-30 Hz)



  

Loading Frozen Forward Solutions

input_tensor = Input(shape = (M,))

x = Dense(30, activation = 'softplus')(input_tensor)

x = Dense(Nfwd, bias = False, activation = 'linear')(x)

Nfwd_tensor = x

fwd_layer = Dense(M, bias = False, activation = 'linear')

fwd_tensor = fwd_layer(Nfwd_tensor)

# Load forward solutions into the final layer's weights.

fwd_layer.set_weights([Dfwd]) # weights from sam_wts -B

fwd_layer.trainable = False

model = Model(input = input_tensor, output = fwd_tensor)

m1 = Model(input = input_tensor, output = Nfwd_tensor) # create after training model

m1.save(“model.h5“)

Keras/Tensorflow code that creates a 
frozen layer from forward solutions:



  

Near the Button Press

Nfwd_tensor prediction, given raw data point



  

BCI

● Use real-time beamformers to compute virtual 
channels in various parts of the brain

● Compute feature sets using the virtual RT data, for 
example, a low dimensional code layer of an 
autoencoder

● Train the DNN to use these features by conditioning 
the code layer‘s learning on the required output signal

● Time-dependent DNNs using LSTM and Transformers 
to decode neural language (* see me)



  

Thanks

Much of the real-time data-acquisition pipeline is still under 
development.

Participation is easy since most of the code is Python.

MEG Core Staff can help with customization to particular 
applications, and assistance with Deep Learning models.
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