From ECoG to Magnetocorticography:

Optically Pumped Magnetometers for non-invasive, high-resolution imaging

Amaia Benitez-Andonegui, PhD Post Doctoral Visiting Fellow, MEG Core, NIMH Date: 11.12.21

Optically Pumped Magnetometers

- 1. What are optically pumped magnetometers and what do they measure?
- 2. Neuroscientific applications around the world
- 3. Our project at NIH for high spatial and temporal resolution measurements/imaging

Principle of operation

Rubidium (87Rb) vapor cell

⁸⁷Rb spins oriented randomly

Apply circularly polarized light

When aligned, light no longer transfers energy to atoms

⁸⁷Rb spins aligned to laser

Optical detection through amount of transmitted light

Principle of operation II

Magnetometer sensitive to the magnetic field in a specific direction

Variations of commercial OPMs and OPMs under development

SQUID-based and OPM-based systems

SQUID based MEG

head and coils

needed

~600Hz*

(~2cm)

>100

5-10fT/√Hz

5K, vacuum between

OPM based MEG

Room temperature

~10fT/√Hz**

~200Hz

Fixed or flexible, placed on subject's scalp

10-60

Fixed, gap between

scalp and sensor

**Trade-off between sensor size and sensitivity

Operating temperature

Sensitivity

Bandwidth

Sensor array

Number of sensors

* For a sampling rate of 2400 Hz

OPMs around the world

ApplicationsEvoked responses

Aalto Visual evoked responses (Livanainen et al, 2020)

ApplicationsMulti-modal imaging

Nottingham

- Hyperscanning (Holmes et al, 2021)
- Connectivity (Boto et al, 2021)
- Simultaneous EEG and OPMs (Boto et al, 2019)
- Integration with virtual reality (Roberts et al, 2019)

- Birmingham (Jensen and Kowalczyk)
 - Concurrent TMS-OPM setup

Applications

Children

Applications

 $\mathbf{10}$

From a wearable version of SQUID-MEG...

Wittevrongel et al, 2021

Kernel Flux

Hill et al, 2020

FieldLine Inc.

Cerca Magnetics

Livanainen et al, 2020

... to a non-invasive version of ECoG

OPMs at

Magnetocorticography (MCoG)

ECoG

- gold standard for IED detection
- but invasive procedure + associated bleeding/infection risk

SQUID-MEG epilepsy patients

- Non-invasive
- Interictal spikes can be detected
- But <u>cannot</u> distinguish between closely-spaced sources of similar amplitude

MCoG [OPMs]

- Shares advantages of SQUID-MEG
- <u>Can</u> distinguish between closelyspaced sources of similar amplitude

Applications

- Identify the ictal onset zone in epilepsy
- Separate signals from cortical lamina
- Understand local cortical networks in language production
- Brain-computer and Brain-machine interface

OPMs at Initial shifts sensors (+3 refs)

• Accurate

- FDM printer (Stratasys Objet 260 Connex 3)
- Rigur plastic, res: 0.001 inches
- Curvature r=80mm

OPMs at Accurate Initial sequence of the sensors (+3) Accurate Keep sensors as tightly packed as refs)

- Accurate
- possible
- FDM printer (Stratasys Objet 260 Connex 3)
- Rigur plastic, res: 0.001 inches
- Curvature r=80mm

Nugent et al, under review

2D reconstructed image

Based on LCMV beamformer estimates of test sources

Spacing between OPMs

16 sources

32 sources

Not Packed

Sensor Spacing: 20mm x 18mm

Sensor Spacing: 20mm x 18mm

OPMs at Accurate Initial sequence of the sensors (+3) Accurate Keep sensors as tightly packed as refs)

- Accurate
- possible

12

• Reference array

estimates of test sources

- Rigur plastic, res: 0.001 inches
- Curvature r=80mm

Nugent et al, under review

2D reconstructed image

32 sources

Spacing between OPMs

Not Packed

Sensor Spacing: 20mm x 18mm

56 sensors (+3 refs)

12

56 sensors (+3 refs)

Thermal mitigation strategies over time

7x8 sensor fixture With ceramic strips + heat sinks

OPMs at NIH

Challenges • Sensors heat up

- Crosstalk
- Calibration

- In dense arrays, modulation and negative feedback fields are sensed by neighboring sensors
- Can affect the orientation of a sensor's sensitive axis

OPMs at NIH

- For maximum accuracy of source localization/ discrimination
- To calibrate gain and axis of each sensor

Challenges • Sensors heat up

- Crosstalk
- Calibration
- In dense arrays, modulation and negative feedback fields are sensed by neighboring sensors
- Can affect the orientation of a sensor's sensitive axis

Independent source resolution (ISR)

ISR= mean(diag(M))-mean(off-diag(M))

Nugent et al, under review

OPMs at NH Coll geometry

Challenges

Calibration jig

Coil orientation in jig

A hollow semi-sphere with 37 coils in it Coils are arranged in different "rings" They are energized one at a time

Schematic view of the known coil positions & orientations

- Sensors heat
- upCrosstalk

Calibration

- Coils energized sequentially with function generator
- Recorded by sensors placed on calibrator
- Field modeling is performed

OPMs at NH In parallel...

- Right median nerve stimulation
 DC removal + 300Hz
- 500 us pulse duration, 0.35s ISI
- 400s duration

low pass filter
~1140 trials

Next

Digit representation in somatosensory cortex

Galileo tactile stimulation system

Sanchez-Panchuelo et al, 2012

Solve current challenges:

- Fine-tune calibration algorithm
- Assess thermal mitigation strategy in 7x8 array
- Weight relief mechanism for sensor fixture
- Keep ambient fields at zero (Mu Coils: from static to dynamic zeroing)

Acknowledgements

- MEG Core OPM team: Allison Nugent, Stephen Robinson, Tom Holroyd
- NIMH Section on Instrumentation, NIMH: George Dold, Bruce Pritchard, Will Bennett, Katherine Cameron
- FieldLine: Svenja Knappe, Jeramy Hughes, Tyler Maydew, Orang Alem

The remnant field inside most MSRs can be several tens of nT with a spatial variation of several nT over 10 cm Even small head movements and rotations can result in complete loss of data, or data which is corrupted by motion artefacts

Applications

Nottingham

- Hyperscanning (Holmes et al, 2021)
- Connectivity (Boto et al, 2021)
- Simultaneous EEG and OPMs (Boto et al, 2021)
- Integration with virtual reality (Roberts et al, 2019)

Birmingham (Jensen and Kowalczyk)

Concurrent TMS-OPM setup

UCL

. . .

- Hippocampal measurements (Barry et al, 2019)
- Magnetospinography (Bestmann lab)

