Bayes Factors for time-resolved neuroimaging data

Lina Teichmann

Laboratory of Brain and Cognition, NIMH

28/02/2022

Time-resolved neuroimaging

- M/EEG allows us to study regional and large-scale dynamics of brain activity
- Many different analysis techniques
 - Event-related analyses
 - Time-domain
 - Frequency-domain
 - Source analyses
 - Oscillations
 - Connectivity
 - •

Using Bayes Factors for M/EEG results

- Based on Harold Jeffreys perspectives and philosophy of scientific learning (cf. Ly et al., 2016)
 - Relationship between probability & inference: How probable is one hypothesis in comparison to another when considering the data? (*Jeffreys*, 1935, 1939)

- Practical advantages for M/EEG analyses
 - 1. Allow us to directly compare two hypotheses
 - 2. Measure of strength that is interpretable
 - 3. Enables us to collect data iteratively

Sir Harold Jeffreys

Time-resolved classification analysis

Example: Colour processing

- Activation-vs information-based framework (ef. Hebart & Baker, 2018)
 - Activation: Does red evoke a stronger/weaker signal than green? (univariate)
 - Information: Is there information about green/red in the signal? (multivariate)
- Classification analysis hypotheses
 - Ho: mean decoding equals chance decoding
 - Ha: mean decoding is larger than chance decoding
- Bayes Factors: the probability of one hypothesis versus another given the data

Example dataset

- 18 participants
- 1600 trials
- Epoched -100 to 800ms
- 200 Hz resolution
- Target-detection task (targets excluded from analysis)
- 5-fold cross-validation
- Originally, permutation tests and clustercorrected p-values

Example dataset results

Adjustment of prior range (null interval)

- Increasing the lower bound means allowing small effects under Ho
- Observed chance is often different than theoretical chance

What lower bound makes sense?

• Baseline period: What values can be expected "by chance"

Variation of prior width

- Widths capture expected effect sizes
- Changing prior width has no influence on our data (effect sizes large)

Sensitivity to small effects given parameters

- Simulated classification results for different sample sizes and varied the effect sizes
 - Even if effect is small (and lies within the pre-defined null interval) we find evidence for Ha after a while if the effect is consistently there
 - Large number of observations does not automatically lead to conclusive evidence (if the effect is truly in between the hypotheses)
 - Interval is critical to find evidence for the null

Flexible sampling plans

- Bayes Factors allow us to collect data iteratively
- More trials or more participants?
- Safer to overpower number of trials

Example studies: making use of Bayes Factor

advantages

Mental imagery: when do we have the strongest/weakest evidence?

- Stimuli: personallyrelevant people and places
 - Is there information about stimulus class during mental imagery?

- Long epochs / recall period
- Is there a time-window where we have strong evidence for accurate recall?

[Interpretability of Bayes Factors]

Occlusion: Are there timepoints with *no* information?

- How are object properties represented during occlusion?
- Possible that there is *no* information about the object during occlusion

[Contrasting Ho and Ha]

In which quadrant is the object?

Teichmann*, Moerel*, Rich & Baker, Cortex, in-principle acceptance

Thank you ©

Denise Moerel

Chris Baker

Tijl Grootswagers

Paper on bioRxiv: An empirically-driven guide on using Bayes Factors for M/EEG decoding

