Bayes Factors for time-resolved neuroimaging
data




Time-resolved neuroimaging

* M/EEG allows us to study regional and large-scale dynamics of brain activity

* Many different analysis techniques
* Event-related analyses
* Time-domain
* Frequency-domain

* Source analyses

Oscillations

* Connectivity

* Statistics important to draw meaningful conclusions



Using Bayes Factors for M/EEG results

* Based on Harold Jeffreys perspectives and philosophy of scientific learning (et 1y et al.,
2016)

* Relationship between probability & inference: How probable is one hypothesis in
comparison to another when considering the data? (effreys, 1935, 1939)

* Practical advantages for M/EEG analyses
1. Allow us to directly compare two hypotheses
2. Measure of strength that is interpretable

3. Enables us to collect data iteratively

Sir Harold Jeffreys



Time-resolved classification analysis

« Example: Colour processing

a "

e Activation- vs information-based framework ¢~
Hebart & Baker, 2018)

Activation: Does red evoke a stronger/weaker signal
than green? (univariate)

Information: Is there information about green/red in
the signal? (multivariate)
* C(lassification analysis hypotheses

* Ho: mean decoding equals chance decoding

Ha: mean decoding is larger than chance decoding

* Bayes Factors: the probability of one hypothesis
versus another given the data
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Example dataset
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Leaving one exemplar pair out
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18 participants

1600 trials

Epoched -100 to 8ooms
200 Hz resolution

Target-detection task (targets excluded from
analysis)

5-fold cross-validation

Originally, permutation tests and cluster-
corrected p-values

Teichmann et al., 2019, NeuroImage



Example dataset results

Colour decoding accuracy

/ (red versus green)
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Adjustment of prior range (null interval)

Increasing the lower bound means allowing small effects under Ho

Observed chance is often different than theoretical chance
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What lower bound makes sense®?

Teichmann et al., 2018 magnitude decoding - pre stimulus onset

* Baseline period: What values |
I post stimulus onset

can be expected “by chance”

Teichmann et al., 2020 colour congurency

Moerel et al., 2021a attention & decision

Moerel et al., 2021b attention & expectation

Grootswagers et al., 2021 object attention

Robinson et al., 2021 imagined location

Grootswagers et al., 2019 mid level features
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Variation of prior width

Widths capture expected effect sizes

* Changing prior width has no influence on our data (effect sizes large)

BF (log scale)
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Sensitivity to small effects given parameters

Simulated classification results for different sample
sizes and varied the effect sizes

Even if effect is small (and lies within the pre-defined
null interval) we find evidence for Ha after a while if
the effect is consistently there

Large number of observations does not automatically
lead to conclusive evidence (if the effect is truly in
between the hypotheses)

Interval is critical to find evidence for the null
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Flexible sampling plans
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Example studies: making use of Bayes Factor
advantages



Mental imagery: when do we have the strongest/weakest evidence?

« Stimuli: personally-
relevant people and
places

2000 - 4000 ms

Get Ready

stimulus class during
mental imagery?

Recall Period
4000 ms

* Long epochs / recall period

* Isthereatime-window where we have strong evidence for

accurate recall?

[Interpretability of Bayes Factors]

* |s there information about

a. Recall decoding
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Kidder*, Corriveau*, Teichmann, Wardle, Baker (under review)



Occlusion: Are there timepoints with *no* information?

* How are object properties represented during
occlusion?
* Possible that there is *no* information about
the object during occlusion
In which quadrant is the object?
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Teichmann*, Moerel*, Rich & Baker, Cortex, in-principle acceptance



Thank you ©

Denise Moerel

Tijl Grootswagers

Paper on bioRxiv: An empirically-driven guide on using Bayes Factors for M/EEG decoding
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