# Automated Coregistration of MEG Using Cortical Constraints

Stephen E. Robinson, Amaia Benitez-Andonegui, Allison C. Nugent



MEG Core Facility, NIMH Biomag 2024, Sydney 29 August 2024







#### Why is it Necessary to Refine Coregistration?

- Development of MagnetoCorticoGraph (MCoG) for non-invasive cortical mapping
- OPMs can record high spatial frequencies
- Source solution resolution can be improved by using cortical normal vectors
- Present coregistration methods are not sufficiently accurate for using normal
- Available coregistration methods using external features include:
  - head coils & MRI markers
  - images of head, markers, and MRI (e.g., BrainSight™)
- These methods do not account for postural changes in brain position

 We introduce coregistration using the MEG data with *internal* (cortical) anatomy



56 primary sensors In 7x8 array + 3 references



subject with sensor array placed over left sensorimotor cortex

### Principle: alignment of cortical images derived from constrained & unconstrained moment vectors

- Coregistration is based upon comparison of the anatomical cortical normal vectors (constrained moment vector) with that (unconstrained moment vector) computed from the MEG data using an eigensystem solution
- The reliability of the MEG moment vector estimates are related to the span of the eigenvalues of the eigensystem solution:

$$\mathbf{L}_r^T \mathbf{C}^{-2} \mathbf{L}_r \boldsymbol{e}_k = \boldsymbol{\lambda}_k \mathbf{L}_r^T \mathbf{C}^{-1} \mathbf{L}_r \boldsymbol{e}_k$$
, where  $\mathbf{C} = \mathbf{E}[\mathbf{M}\mathbf{M}^T]$ 



### Principle (cont'd): cortical image alignment

- Comparison of constrained & unconstrained moment vectors are ambiguous in 2π
- Instead, derive cortical surface images using:

$$b_{constrained} = \|\mathbf{L}_{r} \boldsymbol{u}_{vertex}\|$$
  
 $b_{unconstrained} = \|\mathbf{L}_{r} \boldsymbol{e}_{min}\|$ 

 Iteratively coregister the MEG & MRI by transforming the sensor array position & orientation so that the unconstrained and constrained vertices are maximally correlated

### cortical surface forward solutions under MCoG array



Before Coregistration R=-0.085



#### constrained









#### Flow Diagram for Each Iteration



### **SEF Subject – Pial Surface Scattergram**



Results after 500 iterations:

x (mm) y (mm) z (mm) θ (deg) φ (deg) 0.714 5.553 2.817 0.313 -0.870

Initial correlation: **0.246** for 1162 vertices

Final correlation: **0.841** for 1279 vertices

## Before Coregistration: forward solution map for 1000+ vertices with the largest eigenvalue span





## After Coregistration: forward solution map for 1000+ vertices with the largest eigenvalue span





### **SEF Subject – Beta Band ERD**





#### **Prerequisites & Limitations**

#### Requirements:

† Sensor array must be calibrated for position, sensing vector, gain, & crosstalk MRI must be free of geometric distortion MRI segmentation must be high quality MEG data must be free of sensor movement with respect to the head

† Presented in Symposium: Localization accuracy of OPM MEG, Wednesday 28<sup>th</sup> 10:06 - 11:27

- Grossly underdetermined problem up to 250,000 vertices & 56 sensors
- Selection of surface pial or smooth white matter
- Selection of number of significant vertices
- Frequency bandpass
- Interaction between translation & rotation
- Minimum eigenvalue span (reliability of unconstrained moment vector estimate)
- Minimum number of vertices used
- Cortical normal vector range used
- Dependency on cortical activity? (tbd)



#### OPM Team at the NIMH MEG Core Facility

Amaia Benitez-Andonegui, Allison Nugent, Tom Holroyd, Stephen Robinson













ONE PROGRAM,
MANY PEOPLE,
INFINITE POSSIBILITIES
irp.nih.gov



